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Intro

e Sparse BLAS (Basic Linear Algebra Subroutines) [2] speci-
fies main kernels for iterative methods:

— sparse Multiply by Matrix: “MM”
— sparse triangular Solve by Matrix: “SM”

e Focus on MM: C' < C + aop(A) x B, with

— A has dimensions m x k and is sparse (nnz nonzeroes)
—op(A) can be either of {A, AT, AT} (parameter transA)

— left hand side (LHS) Bis k x n,
right hand side (RHS) C'is n x m (n=NRHS),
both dense (eventually with strided access incB,incC, ...)

—a is scalar

—either single or double precision, either real or complex

elibrsb implements the Sparse BLAS using the RSB
(Recursive Sparse Blocks) data structure [3].

e Hand tuning for each operation variant is impossible.

e We propose empirical auto-tuning for 1ibrsb-1.2.
RSB: Recursive Sparse Blocks

o Sparse blocks in COO or CSR [1].
o ...eventually with 16-bit indices (‘HCOO” or “HCSR”).
o cache blocks suitable for thread parallelism.

e Recursive partitioning of submatrices results in Z-ordered
blocks.
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o Instance of matrix bayer02 (ca. 14k x 14k, 64k nonzeroes).
eThe boxes are sparse blocks.

o Greener have fewer nnz than [average, redder have more.
e Blocks rows (columns) of LHS (RHS) range during MM.

o Larger submatrices like "9/9” can have fewer nonzeroes than
smaller ones like "4/9”.

Merge / split based autotuning

o Optimal default blocking ?
— Irregular matrix patterns !
— Operands (especially transA, NRHS) change memory foot-
print !
o Empirical auto-tuning:
—Given a Sparse BLAS operation, probe for a better perform-
ing blocking.
— Search among slightly coarser or finer ones.
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Untuned. Tuned for NRHS=1. Tuned for NRHS=3.
o Tuning example on symmetric matrix audikw_1.
o Here only lower triangle, ca. 1M x 1M, 39M nonzeroes.
o On a machine with 256 KB sized L2 cache.
o Left one (625 blocks, avg 491 KB) is before tuning.

e Middle one (271 blocks, avg 1133 KB) after tuning (1.057x
speedup, 6436.6 ops to amortize) for MV (MM with NRHS=1).

o Right one (1319 blocks, avg 233 KB) after tuning (1.050x
speedup, 3996.2 ops to amortize) for MM with NRHS=3.

e Finer subdivision at NRHS=3 consequence of increased
cache occupation of per-block LHS/RHS operands.

Sparse BLAS autotuning extension

1 | Matrix-Vector Multiply: y < alpha*op(A)*x+y

2 call USMV(transA , alpha,A,x,incx,y,incy,istat)
s | Tuning request for the next operation

s call USSP(A,blas_autotune_next_operation,istat)

s | Matrix structure and threads tuning

s call USMV(transA , alpha,A,x,incx,y,incy,istat)
7.
s do ! Ais now tuned for y « alpha*op(A)*x+y

s call USMV(transA , alpha,A,x,incx,y,incy,istat)
0.

11 | Request autotuning again

12 call USSP (A,blas_autotune_next.operation, istat)

13 | Now tune for C « C + alpha * op(A) * B

s call USMM(order,transA , nrhs, alpha,A,B,IdB,C,IdC,istat)

15 | The RSB representation of A is probably different than before USMM

Experiment in MM tuning and comparison to MKL
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Setup Highlight: symmetric MM vs MV performance Outlook

One may improve via:
« Reversible in-place merge and split: no need for copy

e librsb (icc -03 -xAvV¥, v15) vs Intel MKL (v.11.2) CSR.
* 2x “Intel Xeon E5-2680", 16 OpenMP threads.

Symmetric MM time to MV time, RSB Symmetric MM time to MV time, MKL

. K e-{L19xspeedp e >0.32x slowdown while tuning.
MM with NRHS={1,2}, four BLAS numerical types. . . . .

. : . . . . e Best merge/split choice not obvious: different merge and
* 27 matrices in total (as in [3]), including symmetric. split rules

Results Summary « Non-time efficiency criteria (e.g. use an energy measuring

APl when picking better performing).

o Few dozen percent improvement over untuned, costing few
thousand operations.

« Significantly faster than Intel MKL on symmetric and trans-
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